首页> 外文OA文献 >Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
【2h】

Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data

机译:马尔科夫随机场先验判别分析的变量选择用于微阵列数据分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: Discriminant analysis is an effective tool for the classification of experimental units into groups. Here, we consider the typical problem of classifying subjects according to phenotypes via gene expression data and propose a method that incorporates variable selection into the inferential procedure, for the identification of the important biomarkers. To achieve this goal, we build upon a conjugate normal discriminant model, both linear and quadratic, and include a stochastic search variable selection procedure via an MCMC algorithm. Furthermore, we incorporate into the model prior information on the relationships among the genes as described by a gene–gene network. We use a Markov random field (MRF) prior to map the network connections among genes. Our prior model assumes that neighboring genes in the network are more likely to have a joint effect on the relevant biological processes.
机译:动机:判别分析是将实验单位分类的有效工具。在这里,我们考虑了通过基因表达数据根据表型对受试者进行分类的典型问题,并提出了一种将变量选择纳入推理过程的方法,以鉴定重要的生物标志物。为了实现这一目标,我们建立了线性和二次共轭正态判别模型,并通过MCMC算法包括了随机搜索变量选择程序。此外,我们将模型之间的先验信息整合到模型中,如基因-基因网络所述。在绘制基因之间的网络连接之前,我们使用马尔可夫随机场(MRF)。我们先前的模型假设网络中的邻近基因更可能对相关的生物过程产生共同影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号